2007년 Communication Signal Processing이라는 강의를 맡았었는데, 실제 내용은 Array Signal Processing에 관한 것이었습니다. 이 강의에서 사용했던 중간고사 문제입니다.
Communication Signal Processing : MidExam
`
1.
(a) [5 pts] Explain a (temporal) sampling theorem.
(b) [10 pts] Consider a linear array with sensor distance . Source signal has a wavelength
. Show that
should be
.
2. Consider a linear array as following figure.
(a) [5 pts] When ,
(assume that the sensor noise is
)
(b) [5 pts] When , find a conventional (delay-and-sum) beamformer's output
.
(c) [10 pts] Input SNR can be defined by
.
Find output SNR of conventional beamformer.
(d) [15 pts] When , normalized directional gain pattern for direction finding can be defined as
,
where . Find
.
3. Consider a linear array signal model
where and
has zero mean.
(a) [5 pts] A weight vector of conventional beamformer is given by , and the beamformer's output
. Find the output power
.
(b) [10 pts] Solve the following optimization problem.
and find the output power .
(c) [15 pts] Since ,
is also equal to 1. By using Cauchy-Schwarz inequality (
), prove that
.
4. Let narrowband coherent signals arrive at the array from direction
.
(a) [10 pts] Describe the reason why MUSIC algorithm can't find the DOA.
(b) [10 pts] Describe how to solve the coherent problem.
'Lecture & Seminar 자료' 카테고리의 다른 글
[2010년 7월] Independent Component Analysis, Yonsei Univ. (0) | 2010.07.12 |
---|---|
[2006년 2학기] Speech Signal Processing Project, Korea Univ. (0) | 2010.07.08 |
[2007년 2학기] Array Signal Processing 중간고사 문제, Korea Univ. (0) | 2010.07.08 |
[2005년 1학기] Microphone Array, Korea Univ. (0) | 2010.07.01 |
[2005년 1학기] Array Signal Processing, Korea Univ. (2) | 2010.07.01 |
[2005년 1학기] Digital Signal Processing, Korea Univ. (0) | 2010.07.01 |